Describe the workings behind the Photoelectric effect

In any metal, there are free surface electrons. For these electrons to escape from the surface of a metal, they require a specific amount of energy, called the 'Work Function'. There are many sources of this energy, but we will focus on just one - electromagnetic energy. Traditionally, EM energy was considered as a transverse wave, similar to that of water waves, but in the Quantum model, the energy is split into small packets, called photons.
These photons behave similarly to particles, and when they come into contact with a metal surface, they interact with only one surface electron. They transfer all of their energy to that one electron, and if this energy is larger than the Work Function (as mentioned previously) the electron will escape the metal as a 'photoelectron' (hence photoelectric effect). Since only one photon can interact with each electron, a greater number of photons incident on the metal per second has no effect. An increase in the EM photon energy means that the released electrons have more energy left over after being emitted, in the form of Kinetic energy.

TR
Answered by Toby R. Physics tutor

2037 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Using the substitution u=cosx + 1, show that the integral of sinx e^cosx+1 is equal to e(e-1), for the values of x between x=π/2 and x=0


The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.


An object with weight w is suspended from two strings at angles θ1 and θ2 to the vertical and with tensions T1 and T2. How would you resolve the vertical and horizontal forces?


Why is the index of refraction important for light passing between two materials?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning