Describe the workings behind the Photoelectric effect

In any metal, there are free surface electrons. For these electrons to escape from the surface of a metal, they require a specific amount of energy, called the 'Work Function'. There are many sources of this energy, but we will focus on just one - electromagnetic energy. Traditionally, EM energy was considered as a transverse wave, similar to that of water waves, but in the Quantum model, the energy is split into small packets, called photons.
These photons behave similarly to particles, and when they come into contact with a metal surface, they interact with only one surface electron. They transfer all of their energy to that one electron, and if this energy is larger than the Work Function (as mentioned previously) the electron will escape the metal as a 'photoelectron' (hence photoelectric effect). Since only one photon can interact with each electron, a greater number of photons incident on the metal per second has no effect. An increase in the EM photon energy means that the released electrons have more energy left over after being emitted, in the form of Kinetic energy.

TR
Answered by Toby R. Physics tutor

2149 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

From the definition of the decay constant for nuclear decay, derive the exponential decay equation.


Describe the principles of fission and fusion. With reference to the nuclear binding energy curve, explain how energy is released.


A ball is kicked from a tower (50m) at a speed of 20m/s. How far away does the ball hit the ground?


What conditions are required for simple harmonic motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning