Discuss the trend in first ionisation energies across the second period of the periodic table.

First of all we must appreciate the general trend in these ionisation energies. The will always be endothermic (takes in energy) since we must put energy into a system to overcome the strong electrostatic attraction between the positive charge of the nucleus and the negative charge of the electrons. Overall across the period we see an increase in the first ionisation energies because we get an increasing nuclear charge as we move from one element to the next AND a decreasing radius, meanwhile we are not filling any higher energy shells so there is no extra shielding, all contributing to the increase in energy. However as we go from Be to B we see a slight decrease, because in Boron we have to remove a p electron (Boron is 1s^2 2s^2 2p^1) and these p electrons are slightly further away from the nucleus and easier to remove. We also see a decrease in first ionisation energy as we go from nitrogen to oxygen. Oxygen has a 2p^4 electron configuration and this means there must be two electrons paired in one of the p orbitals, and as a result of this there is extra repulsion meaning that less energy is required to remove this electron than for nitrogen which is p^3 in configuration. This explains the trend in the ionisation energies and the anomalies to this trend.

JE
Answered by Jake E. Chemistry tutor

14454 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

In terms of reaction mechanisms, what exactly is the rate-determining step?


How does the 3D dash and wedge notation work?


Explain the trends in ionisation energies across the 2nd period of the periodic table?


A buffer was made by mixing 20cm3 of 0.05M NaOH and 20cm3 of 0.25M propanoic acid. Calculate the pH. Ka=1.34x10^-5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning