Answers>Maths>IB>Article

How do you integrate xln(x) between the limits of 0 and 2?

In order to answer this question you need to use integration by parts.Using the standard integration by parts formula: ∫u dv/dx dx = uv-∫v du/dx dx.Let:u=ln(x) v=(1/2)x2du/dx=1/x dv/dx=xTherefore we get:I=[1/2xln(x)-1/2∫xdx]20We now know how to integrate x. It becomes 1/2x2. Therefore the overall integral becomes:I=[1/2xln(x)]20-[1/4x2]20I=2ln(2)-1I=ln(4/e)I ≈ 0.386

LK
Answered by Lena K. Maths tutor

1358 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How to integrate ∫〖3x/√(1-x^2 ) dx〗?


The points {3,3,0}, {0,6,3} and {6,6,7} all lie on the same plane. Find the Cartesian equation of the plane.


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences