Answers>Maths>IB>Article

How do you integrate xln(x) between the limits of 0 and 2?

In order to answer this question you need to use integration by parts.Using the standard integration by parts formula: ∫u dv/dx dx = uv-∫v du/dx dx.Let:u=ln(x) v=(1/2)x2du/dx=1/x dv/dx=xTherefore we get:I=[1/2xln(x)-1/2∫xdx]20We now know how to integrate x. It becomes 1/2x2. Therefore the overall integral becomes:I=[1/2xln(x)]20-[1/4x2]20I=2ln(2)-1I=ln(4/e)I ≈ 0.386

LK
Answered by Lena K. Maths tutor

1601 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the constant term in the binomial expansion of (3x + 2/(x^2))^33


Find the Cartesian equation of plane Π containing the points A(6 , 2 , 1) and B(3, -1, 1) and perpendicular to the plane Π2 (x + 2y - z - 6 = 0).


Why is (-1)*(-1)=1?


Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning