By use of calculus, show that x − ln(1 + x) is positive for all positive x.

  • Google+ icon
  • LinkedIn icon
  • 1011 views

Let f be a function defined on the positive real axis with values in R, such that f(x) = x - ln(1+x). Differentiating this function, we obtain, f'(x) = (x - ln(1+x))' = x' - ln'(1+x) = 1 - 1/(1+x). Since, x > 0, we have 1 + x > 1, and so 1/(1+x) < 1. So, 1 - 1/(1+ x) > 0. So, f'(x) > 0, for all positive x. So, by L'Hospital Rule, f(x) is strictly increasing. Thus, f(x) > lim f(x) when x -> 0 = 0 - ln (1+0) = 0. So, f(x) > 0, for all positive. x. 

Andreea I. Uni Admissions Test .MAT. tutor, Uni Admissions Test .STEP...

About the author

is an online Uni Admissions Test .STEP. tutor with MyTutor studying at Oxford, Merton College University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok