What is the denary equivalent of the hexadecimal number A7?

Let's start by looking at the denary (i.e. base 10) number system. In base 10, you have a column for each digit in a number.

For example, with the number 5,867 you have a 5 in the 1,000's column, an 8 in the 100's column, a 6 in the 10's column, and a 7 in the 1's column. Essentially, this means: (5 x 1,000) + (8 x 100) + (6 x 10) + (7 x 1), which of course comes to 5,867.

The same principle can be used for hexadecimal to denary conversion. Hexadecimal uses the base 16 number system, so instead of have a column for 1's (100), 10's (101), 100's (102) etc. you have a column for 160, 161, 162 etc.

Hexadecimal uses numbers from 0-9 followed by A-F (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) to represent their denary equivalent 0-15. The letter A represents 10, B represents 11, and so on up to F which represents 15.

So, for the hexadecimal value A7, we have a 7 in the 160 column, and an A (which as we know represents 10) in the 161 column. Therefore, to convert it to denary, we do:

A7 = (161 x 10) + (160 x 7) 

= (16 x 10) + (1 x 7)

= (160) + (7)

= 167

Therefore, the hexadecimal number A7 is equal to the denary number 167.

HB
Answered by Henry B. Computing tutor

25389 Views

See similar Computing A Level tutors

Related Computing A Level answers

All answers ▸

Describe what you understand by abstraction, and how it is relevant to software engineering.


What is the point of an Operating System?


Write a Pseudocode function that returns the factorial of an integer input.


What is the main difference between the Stack and the Queue abstract data types?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning