How do I predict the shape of a molecule?

Step 1: Using the periodic table, find how many electrons are in the outer shell of the central atom. Step 2: Add one electron for every other atom that the central atom is bound to. Step 3: Look at the net charge on the molecule add n electrons for a molecule with charge= -n. Step 4: Divide by 2 to give the number of electron pairs around the central atom. Step 5: Find the arrangement of electron pairs which minimises their repulsion.
Using water as an example (H2O). Oxygen is in group 6 so start with 6 electrons. It has 2 Hydrogen atoms bound so +2 electrons. It has no net charge. Total electrons = 6+2 = 8 electrons. So electron pairs = 8/2 = 4 electron pairs around the central oxygen atom. This means the shape of the molecule will be based on a tetrahedral arrangement of electron pairs ( bond angle = 109.5), however only two of these pairs are covalent bonds, the other two are lone pairs so the molecule has a bent shape. Lone pair - Lone pair repulsion is greater than bonding pair repulsion so the bond angle is actually = 104.5

JG
Answered by Joe G. Chemistry tutor

1975 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

24.3cm^3 of 0.02moldm-3 KMnO4 reacted with 20cm^3 of iron (II) solution. Calculate the molarity of the iron (II) solution.


Draw a dot-cross diagram of Chlorine Triflouride, and discuss the shape exhibited by the molecule


The ratio between the molar mass of an alkene(A) and an alkyne(B) with the same number of carbon atoms is 1.05. Find the molecular formulas of the two hydrocarbons then write the reaction for how we can obtain the alkene A from the alkyne B.


How would you name complex organic compounds?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences