How do I predict the shape of a molecule?

Step 1: Using the periodic table, find how many electrons are in the outer shell of the central atom. Step 2: Add one electron for every other atom that the central atom is bound to. Step 3: Look at the net charge on the molecule add n electrons for a molecule with charge= -n. Step 4: Divide by 2 to give the number of electron pairs around the central atom. Step 5: Find the arrangement of electron pairs which minimises their repulsion.
Using water as an example (H2O). Oxygen is in group 6 so start with 6 electrons. It has 2 Hydrogen atoms bound so +2 electrons. It has no net charge. Total electrons = 6+2 = 8 electrons. So electron pairs = 8/2 = 4 electron pairs around the central oxygen atom. This means the shape of the molecule will be based on a tetrahedral arrangement of electron pairs ( bond angle = 109.5), however only two of these pairs are covalent bonds, the other two are lone pairs so the molecule has a bent shape. Lone pair - Lone pair repulsion is greater than bonding pair repulsion so the bond angle is actually = 104.5

JG
Answered by Joe G. Chemistry tutor

2029 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What factors affect acidity in solution?


How can crude oil be used as a source of hydrocarbons?


Why can Cyclohexene react with Bromine but Benzene cannot?


Given the reaction: H2SO4 + NaOH --> ? + H2O. (a). Work out the salt produced (?) and (b). calculate the pH of the remaining solution when 1.2 g of NaOH and 4.41 g of H2SO4 were added in a 500 ml solution. Of the unreacted H2SO4 95% dissociated.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences