How do I predict the shape of a molecule?

Step 1: Using the periodic table, find how many electrons are in the outer shell of the central atom. Step 2: Add one electron for every other atom that the central atom is bound to. Step 3: Look at the net charge on the molecule add n electrons for a molecule with charge= -n. Step 4: Divide by 2 to give the number of electron pairs around the central atom. Step 5: Find the arrangement of electron pairs which minimises their repulsion.
Using water as an example (H2O). Oxygen is in group 6 so start with 6 electrons. It has 2 Hydrogen atoms bound so +2 electrons. It has no net charge. Total electrons = 6+2 = 8 electrons. So electron pairs = 8/2 = 4 electron pairs around the central oxygen atom. This means the shape of the molecule will be based on a tetrahedral arrangement of electron pairs ( bond angle = 109.5), however only two of these pairs are covalent bonds, the other two are lone pairs so the molecule has a bent shape. Lone pair - Lone pair repulsion is greater than bonding pair repulsion so the bond angle is actually = 104.5

JG
Answered by Joe G. Chemistry tutor

2207 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

The boiling points of ammonia (NH3), fluorine (F2) and bromine (Br2) are -33, -188 and +59 degrees celsius respectively. Explain the differences in these boiling points, including the names of any relevant forces and particles.


What are Van Der Waals dispersion forces?


How does radiocarbon dating work?


How do you calculate the pH of a weak acid?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning