A drone is hovering at a constant height above the ground. The mass of the drone is 7 kg. The mass of the package is 3 kg. Calculate the upward force of the Drone.

To answer this Question we will use the equation derived from Newtons second law of motion,
F=ma or in this case W=mg as it is the mass of the object being accelerated by gracity, giving us it's weight
The acceleration downwards due to gravity at a rate of -9.81m/s-2 The mass is the combined mass of the two objects: 7 + 3 = 10 kg
The weight is therefore = W = mg = 10 x 9.81 = - 98.1
As the question state the drone is hovering, the upwards force must be in equilibrium with the weight, giving us a final answer
W + F = 0
-98.1 + F = 0
F = 98.1 N

FT
Answered by Finn T. Physics tutor

3889 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.


A tall 2 meter tall basketball player shoots for the net that stands 3 meters from the ground. If he throws he ball from head height at an angle of 60 degrees and the ball travels at 10 meters per second, how far away is the hoop?


A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.


An exoplanet of mass 1.36x10^26 kg is orbiting a star of mass 3.2x10^31 kg at a distance of 1 AU. What is the magnitude of the gravitational force between the two?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning