A drone is hovering at a constant height above the ground. The mass of the drone is 7 kg. The mass of the package is 3 kg. Calculate the upward force of the Drone.

To answer this Question we will use the equation derived from Newtons second law of motion,
F=ma or in this case W=mg as it is the mass of the object being accelerated by gracity, giving us it's weight
The acceleration downwards due to gravity at a rate of -9.81m/s-2 The mass is the combined mass of the two objects: 7 + 3 = 10 kg
The weight is therefore = W = mg = 10 x 9.81 = - 98.1
As the question state the drone is hovering, the upwards force must be in equilibrium with the weight, giving us a final answer
W + F = 0
-98.1 + F = 0
F = 98.1 N

FT
Answered by Finn T. Physics tutor

4048 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

An internet shopping company is planning to use drones to deliver packages.During a test the drone is hovering at a constant height above the ground.The mass of the drone is 5·50 kg. The mass of the package is 1·25 kg. See questions below


Explain the difference between elastic and inelastic collisions.


What is a boson, as described by the standard model?


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning