A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.

(a). Firstly, pull out useful information . λ=656.3nm Secondly, identify relevant equation and rearrange to find frequency. λ=c/f => f=c/λ Calculate frequency using the given values (c=310^8 m/s), ensuring to convert nm into m f=c/λ=(310^8)/(656.310^-9) f=4.5710^14 Hz => as required, ensuring correct units (Hz)(b). Firstly, identify relevant equation (Planck-Einstein Relationship) and required variables. f=4.5710^14 Hz h=6.6310^-34 Js => Planck's Constant E=hf Then, calculate energy using the above equation E=hf=(6.6310^-34)(4.5710^14) E= 3.0310^-19J => Final answer, with correct units Joules



Related Physics Scottish Highers answers

All answers ▸

An exoplanet, 0.01% the mass of the Sun, orbits a star 2 times the mass of the Sun at a distance of 1AU = 1.5x10^8 km. Using Newton's Law of Universal Gravitation, determine the force between the exoplanet and the star. Mass of Sun = 2x10^30kg.


A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.


A tall 2 meter tall basketball player shoots for the net that stands 3 meters from the ground. If he throws he ball from head height at an angle of 60 degrees and the ball travels at 10 meters per second, how far away is the hoop?


In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences