Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication

We must show that the set satisfies the group requirements: Identity, Closure, Associativity and Invertibility.Identity: Contains identity matrixAssociativity: Follows from the rules of matrix multiplicationInvertibility: As none of the diagonal elements are non zero, if the reciprocal of each diagonal element is taken, the inverse can be obtainedClosure: Can show by example of multiplying two general matrices

NP
Answered by Nishil P. Further Mathematics tutor

2851 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.


By Differentiating from first principles, find the gradient of the curve f(x) = x^2 at the point where x = 2


How do you calculate the cross product of two vectors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning