Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

5 = 5(cos(x)^2 + sin(x)^2) = 5cos(x)^2 + 5sin(x)^2=> 5 - 5cos(x)^2 = 5sin(x)^2=> sin(x)^2 + 5 - 5cos(x)^2 = 6sin(x)^2=> sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5

NT
Answered by Nicholas T. Further Mathematics tutor

2250 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Given that xy=2 and y=3x+5, find x and y. Do not use trial and improvement.


f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


The equation of a curve is y = x^2 - 5x. Work out dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning