Find the gradient of the straight line with equation 4x+3y=12

To answer the question the equation given must be rearranged into the straight line formula, y=mx+c, where m is the gradient of the slopeminus 4x from both sides, we now have 3y=12-4xthen divide through by 3, so we now have y=4-4/3xand now rearrange into form y=mx+c, so we have y=-4/3x+12now the gradient can clearly been seen as -4/3

CN
Answered by Constance N. Maths tutor

8571 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

A circle has equation x^2+y^2+6x+10y-7=0. Find the equation of the tangent line through the point on the circle (-8,-1).


Given f(x) = (x^(2)+(3*x)+1)/(x^(2)+(5*x)+8), find f'(x) and simplify your answer.


Differentiate the equation: 3x^2 + 4x + 3


Why is the gradient of a curve at a point the same as the gradient of the tangent if you can't use gradient formula on a curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences