Find the gradient of the straight line with equation 4x+3y=12

To answer the question the equation given must be rearranged into the straight line formula, y=mx+c, where m is the gradient of the slopeminus 4x from both sides, we now have 3y=12-4xthen divide through by 3, so we now have y=4-4/3xand now rearrange into form y=mx+c, so we have y=-4/3x+12now the gradient can clearly been seen as -4/3

CN
Answered by Constance N. Maths tutor

8658 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

If e^(4t) = 6, find an expression for t.


Find an equation for the straight line AB , giving your answer in the form px+qy=r, where p, q and r are integers. Given that A has co-ordinates (-2,4) and B has co-ordinates (8,-6)


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Determine for what values of c, f(x)=4x^2-(2c+8)x+4 has no real roots.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences