Find the gradient of the straight line with equation 4x+3y=12

To answer the question the equation given must be rearranged into the straight line formula, y=mx+c, where m is the gradient of the slopeminus 4x from both sides, we now have 3y=12-4xthen divide through by 3, so we now have y=4-4/3xand now rearrange into form y=mx+c, so we have y=-4/3x+12now the gradient can clearly been seen as -4/3

CN
Answered by Constance N. Maths tutor

9719 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Given f(x) = (x^(2)+(3*x)+1)/(x^(2)+(5*x)+8), find f'(x) and simplify your answer.


Given g(x) = 4* sin (3*x), find the value of g'(pi/3).


Show that the two vectors A= 2i+3j-k and B=3i-j+3k are perpendicular


Differentiate the equation: 3x^2 + 4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning