Find the gradient of the straight line with equation 4x+3y=12

To answer the question the equation given must be rearranged into the straight line formula, y=mx+c, where m is the gradient of the slopeminus 4x from both sides, we now have 3y=12-4xthen divide through by 3, so we now have y=4-4/3xand now rearrange into form y=mx+c, so we have y=-4/3x+12now the gradient can clearly been seen as -4/3

CN
Answered by Constance N. Maths tutor

8970 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Solve algebraically the following system of equations: 4x + 5y = -3; 6x - 2y = 5


show y=3x-5 is tangent to x^2 + y^2 +2x -4y - 5 = 0 and the point where they touch


log_a(36) - log_a(4) = 0.5, what is a?


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning