A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.

First draw a diagram to see the set-up.Then look at SUVAT to see which values we have been given. In this case it is a=4, u=3,v=18 and s=?. The only letter not used from SUVAT is the t so we use the formula without... v2=u2+2as. Fill in the numbers 182=32+2 x 4 x s324 = 9+ 8s. Rearranges = (324-9)/8 = 39.375 m

AK
Answered by Adam K. Further Mathematics tutor

3000 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


Prove that tan^2(x)=1/(cos^2(x))-1


Work out the equation of the tangent to the curve y=x^2+5x-8 at the point (2,6)


How do I determine if a stationary point on a curve is the maximum or minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning