How do I find the half-life of radioactive isotope?

The half-life of a radioactive isotope is the time taken for half of the atoms in a given sample of the isotope to decay. Radioactivity is random and so, half-life is the average time taken for a large number of atoms. 

There are two ways to find the half-life, both come from the decay equation:   N = N0e^(-λt)      which is an exponential relationship*. 

Where N is the number of atoms of the isotope left at time t and Nis the number of atoms when t =0. λ is known as the decay constant and is the probability that an atom will decay per unit time. If you are given the decay constant you may find the half-life T1/2 by setting N = N0/2 and rearranging to find t = T1/2. Or if you are given N and Nyou may find λ and follow the previous steps.

*Make sure you familiar with exponentials and logs before attempting this topic

JS
Answered by Joe S. Physics tutor

17329 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive the formula for the maximum kinetic energy of an electron emitted from a metal with work function energy p , that is illuminated by light of frequency f.


Show that the radius of an orbit may be expressed as follows: R^3=((GM)/4*pi^2)T^2


What distance is one Parsec


How am I going to remember all of the particles I need to know? (A-level Physics)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning