How do I find the half-life of radioactive isotope?

The half-life of a radioactive isotope is the time taken for half of the atoms in a given sample of the isotope to decay. Radioactivity is random and so, half-life is the average time taken for a large number of atoms. 

There are two ways to find the half-life, both come from the decay equation:   N = N0e^(-λt)      which is an exponential relationship*. 

Where N is the number of atoms of the isotope left at time t and Nis the number of atoms when t =0. λ is known as the decay constant and is the probability that an atom will decay per unit time. If you are given the decay constant you may find the half-life T1/2 by setting N = N0/2 and rearranging to find t = T1/2. Or if you are given N and Nyou may find λ and follow the previous steps.

*Make sure you familiar with exponentials and logs before attempting this topic

JS
Answered by Joe S. Physics tutor

16661 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do I derive equations for Time of Flight and Range in Parabolic Motion?


If two cars are moving, labelled car A and car B. Car A moves at 15 m/s and B at 10 m/s but car B also accelerated at 2 m/s/s. If the two both travel for ten seconds, which car will travel further?


Explain the wave - particle duality


What is Kirchoff's first law?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning