MYTUTOR SUBJECT ANSWERS

269 views

How would I solve y=3x, 2x+y=5 using the substitiution method?

y=3x (1)

2x+y = 5 (2)

Here we are being asked to find what the value of x and y is. It is asking us to substitute either x or y into the equation to help us find our solution. Now substitue means remove something and replace it with something else. In this case its is asking us to either remove x or y term and replace it with the other term.

So for this question we will take out the y term in equation (2) and put the equivalent x term back in its place. We have chosen to replace the y term in this case because it is the most simple substitution. A good rule in maths is its often best to choose the method that has the least number of steps in as that way there is less chance for accidental errors occuring.

Equation (1) tells us that y=3x, that is 1 y term is equal to 3 x  terms.

Substituting this into equation (2) gives us:

2x+3x=5

Its possible to add these 'x' terms together to simplify our equation even further, giving us:

5x=5

Now our aim is to find what 1 x term is. So we need to find a way of getting the x term all alone on one side of the equation, and all other terms on the other side.

It is possible to divide through our equation by 5, giving:

x=5/5

simplifying to:

x=1

Now that we've found the value of x we can replace all the x's in our equations to find the value of y. Choosing the simpler equation (1) again we have:

y=3x

(replacing x with 1 gives:)

y=3*1

simplifying to:

y=3

We now have our complete solution. Before we finish though, re-writing our solutions next to each other is thought to be the clearest way of presenting our answer. So we would put:

x=1 , y=3

Samantha J. 13 plus  Maths tutor, GCSE Maths tutor, A Level Maths tut...

8 months ago

Answered by Samantha, a 11 Plus Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

123 SUBJECT SPECIALISTS

£18 /hr

Katrina G.

Degree: Liberal Arts and Natural Sciences (Bachelors) - Birmingham University

Subjects offered: Maths, Physics+ 1 more

Maths
Physics
English

“Hello, I'm a Liberal Arts and Natural Sciences student at the University of Birmingham, studying Psychology, Philosophy and Physics. I am friendly, patient and sensitive to individual needs in my tutoring approach. I have previously t...”

MyTutor guarantee

£18 /hr

Rhys M.

Degree: Economics (Bachelors) - Durham University

Subjects offered: Maths, History+ 2 more

Maths
History
Geography
Economics

“About Me I am currently studying Economics at Durham University. Economics is a very broad subject, so I am very passionate about many other subjects and do a lot of reading around my subject. I was delighted to be awarded the top spo...”

£18 /hr

Eilidh F.

Degree: Natural Sciences (Bachelors) - York University

Subjects offered: Maths, Further Mathematics + 2 more

Maths
Further Mathematics
Chemistry
Biology

“About me: My name is Eilidh (pronounced Aylee) and I am a student at the University of York. I study Natural Sciences specialising in Neuroscience, and have always loved both Science and Maths. I also reallyenjoy teaching, meeting new...”

MyTutor guarantee

About the author

Samantha J.

Currently unavailable: for regular students

Degree: Bioengineering (Masters) - Sheffield University

Subjects offered: Maths, Biology

Maths
Biology

“About Me: Hi there, I’m Sam. I am a final year MEng Bioengineering student at Sheffield University and Ireally enjoy solving real-world problems through the application of Maths and Science. I have extensive teaching experience throug...”

MyTutor guarantee

You may also like...

Other 11 Plus Maths questions

A group of 120 Year 4s and Year 5s are going on a school trip. 60% of the children going on the trip are Year 4s, and of the Years 4s, 1/4 are boys. How many Year 4 girls are going on the trip?

The average age of a group of 6 people is 21. One more person joins the group and the average is now 25. How old is the new member of the group?

How do you solve simultaneous equations?

Forty-seven thousand, nine hundred and eighty-three people went to a football match. What is this number rounded to the nearest thousand?

View 11 Plus Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok