Answers>Maths>IB>Article

integrate arcsin(x)

Use integration by parts to obtain:u=arcsin(x), u'=1/(1-x2)0.5, and v'=1, v=x
Using the equation: integral of uv' = uv - integral of u'vintegral of arcsin(x) = xarcsin(x) - integral of x/(1-x2)0.5
Use integration by substitution to obtain to integrate x/(1-x2)0.5:u=1-x2, du/dx=-2x, dx=-du/2xThe integral becomes: -1/2u0.5Solving using the power rules, the solution is: -u0.5Solving back using x: -(1-x2)0.5
Thus, the final solution becomes: xarcsin(x)+(1-x2)0.5+c

MG
Answered by Maya G. Maths tutor

1463 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the constant term in the binomial expansion of (3x + 2/(x^2))^33


Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?


Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.


Sketch the graph of x^2 - y^2 = 16


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences