Answers>Maths>IB>Article

integrate arcsin(x)

Use integration by parts to obtain:u=arcsin(x), u'=1/(1-x2)0.5, and v'=1, v=x
Using the equation: integral of uv' = uv - integral of u'vintegral of arcsin(x) = xarcsin(x) - integral of x/(1-x2)0.5
Use integration by substitution to obtain to integrate x/(1-x2)0.5:u=1-x2, du/dx=-2x, dx=-du/2xThe integral becomes: -1/2u0.5Solving using the power rules, the solution is: -u0.5Solving back using x: -(1-x2)0.5
Thus, the final solution becomes: xarcsin(x)+(1-x2)0.5+c

MG
Answered by Maya G. Maths tutor

1511 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


What is proof by induction and how do I employ it?


Let f(x)=x^2-ax+a-1 and g(x)=x-5. The graphs of f and g intersect at one distinct point. Find the possible values of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences