Answers>Maths>IB>Article

integrate arcsin(x)

Use integration by parts to obtain:u=arcsin(x), u'=1/(1-x2)0.5, and v'=1, v=x
Using the equation: integral of uv' = uv - integral of u'vintegral of arcsin(x) = xarcsin(x) - integral of x/(1-x2)0.5
Use integration by substitution to obtain to integrate x/(1-x2)0.5:u=1-x2, du/dx=-2x, dx=-du/2xThe integral becomes: -1/2u0.5Solving using the power rules, the solution is: -u0.5Solving back using x: -(1-x2)0.5
Thus, the final solution becomes: xarcsin(x)+(1-x2)0.5+c

MG
Answered by Maya G. Maths tutor

1879 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


How do I derive the indefinite integral of sine?


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning