Answers>Maths>IB>Article

integrate arcsin(x)

Use integration by parts to obtain:u=arcsin(x), u'=1/(1-x2)0.5, and v'=1, v=x
Using the equation: integral of uv' = uv - integral of u'vintegral of arcsin(x) = xarcsin(x) - integral of x/(1-x2)0.5
Use integration by substitution to obtain to integrate x/(1-x2)0.5:u=1-x2, du/dx=-2x, dx=-du/2xThe integral becomes: -1/2u0.5Solving using the power rules, the solution is: -u0.5Solving back using x: -(1-x2)0.5
Thus, the final solution becomes: xarcsin(x)+(1-x2)0.5+c

MG
Answered by Maya G. Maths tutor

1878 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation log2(x + 3) + log2(x - 3) = 4


Given that y = -16x2​​​​​​​ + 160x - 256, find the value of x giving the maximum value of y, and hence give this maximum value of y.


Differentiate x^3 + y^4 = 34 using implicit differentiation


Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning