Explain the workings of a mass spectrometer

Charged particles are fired into a magnetic field (perpendicular to the motion of the particles). Using Fleming’s left hand rule, a magnetic force acts centripetally – such that the charged particles exhibit circular motion.

By equating the magnetic force acting on each charge, with the equation for centripetal force, we have:

Bqv=mv2/r    (1)

Where B is the magnetic field strength

            q is the charge of each particle

            m is the mass of each particle

            r is the radius of curvature of each particle (i.e. the radius of circular motion)

            v is the speed of each particle.

Rearranging equation (1) for m, we have:

m=Bqr/v          (2)

Equation (2) allows us to calculate the mass of ionised atoms, with a charge q related to the number of electrons each ion has gained/lost, assuming we can measure the radius and velocity of each particle. In practice, we would fire the ions through a florescent gas, so their circular motion becomes visible. The speed at which ions enter the magnetic field, v, can be adjusted using an electric field to accelerate the ions into the magnetic field. 

DS
Answered by Dan S. Physics tutor

7265 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

When 0.81 m of a wire with cross-sectional area of 3.1*10^-11 m^2 is connected across a 2 V battery a current of 1.6 A flows in the wire. Find the resistivity of the material of the wire.


What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?


What is the photoelectric effect?


A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning