Explain the workings of a mass spectrometer

Charged particles are fired into a magnetic field (perpendicular to the motion of the particles). Using Fleming’s left hand rule, a magnetic force acts centripetally – such that the charged particles exhibit circular motion.

By equating the magnetic force acting on each charge, with the equation for centripetal force, we have:

Bqv=mv2/r    (1)

Where B is the magnetic field strength

            q is the charge of each particle

            m is the mass of each particle

            r is the radius of curvature of each particle (i.e. the radius of circular motion)

            v is the speed of each particle.

Rearranging equation (1) for m, we have:

m=Bqr/v          (2)

Equation (2) allows us to calculate the mass of ionised atoms, with a charge q related to the number of electrons each ion has gained/lost, assuming we can measure the radius and velocity of each particle. In practice, we would fire the ions through a florescent gas, so their circular motion becomes visible. The speed at which ions enter the magnetic field, v, can be adjusted using an electric field to accelerate the ions into the magnetic field. 

DS
Answered by Dan S. Physics tutor

6753 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is an electron volt?


A car undergoes uniform acceleration from a starting velocity of 10ms^-1 to 20ms^-1 in 10s. Assuming the car's mass is 2000kg, calculate the net force in the direction of the acceleration.


The speed of water moving through a turbine is 2.5 m/s. Show that the mass of water passing through an area of 500 metres squared in one second is about 1 x 10^6 kg (density of sea water = 1030 kg/m^3)


How is a piezoelectric crystal used to generate waves of ultrasound?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences