If a wire loop moves at constant speed into a region where there is a magnetic field, why is a current induced in the wire?

In this question, a square wire loop of length L and resistance R starts in a region with no magnetic field, and moves at a speed v into a region with magnetic field B, which is acting perpendicular to the area of the loop. The two regions are separated by a line parallel to the front edge of the loop. When the square loop is moving in the region with no magnetic field, there is no flux through the loop. However, once the front side of the loop reaches the region where there is a magnetic field, the flux through the loop will start to increase. If we set the moment when the front side of the loop reaches the boundary between the two regions as time t=0, then at time t after that, the area of the loop through which the magnetic field can pass is A=L*vt. The flux is given by the equation phi=BA, so the flux through the loop is phi=BLvt.After time t=L/v, the back edge of the loop will reach the boundary between the 2 regions, and so at any time after that the area is the maximum, L^2. Therefore the flux will remain constant at phi=BL^2. The emf, which is equivalent to the voltage, is related to the flux by the equation emf = d/dt(phi), i.e. the emf is the time derivative of the flux. The time derivative of BLvt is BLv, so between times t=0 and t=L/v, the emf is constant at BLv. Before time t=0, the flux is zero, so the emf is zero. After time t=L/v, the flux is constant, so the time derivative, i.e. the emf, is zero. The current is related to the emf by the equation V=IR, where V is the emf and I is the current, so the current induced in the loop is BLv/R between t=0 and t=L/v, and zero otherwise.

GB
Answered by Gus B. Physics tutor

2699 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A trolley of mass 0.75kg is running along a frictionless track at a constant speed of 0.7ms-1, as the trolley passes below a mass of 0.5kg the mass drops a short vertical distance onto the trolley. Calculate the new velocity of the trolley and mass.


A nail of mass 7.0g is held horizontally and is hit by a hammer of mass 0.25kg moving at 10ms^-1. The hammer remains in contact with the nail during and after the blow. (a) What is the velocity of the hammer and nail after contact?


What is the escape velocity of an object leaving a planet mass M, radius R?


A body of mass 2kg is travelling in a straight line along the x-axis. It collides with a second body of mass 3kg which is moving at -2m/s. The two bodies move off together at 3m/s. What is the initial velocity of the first body?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning