Answers>Maths>IB>Article

Solve the equation sec^2(x) - 4tan(x)= -3 , 0 ≤x≤ 2π

To solve this problem, we have to look at some trig. identities that will help us simplify the problem.The formula booklet is always a great place to start! You can find that sec^2(x) = 1 + tan^2(x). Substituting this into the equation yields tan^2(x) + 1 - 4tan(x) = -3 Move the three over, and you will have tan^2(x) - 4tan(x) + 4 = 0 From here, you can factorize to [ tan(x) - 2 ] ^2 = 0, which gives you tan x = 2arctan(2) = 1.01 radians (63.4 degrees), 4.25 radians (243.4 degrees)
One common point that catches people out is they forget to put two solutions instead of one. Remember, that for any trigonometric function, it will repeat itself in a cyclical manner. Think of the graph, and even sketch it out to get a rough idea of where your solutions will fall, so that you can reach the answer more quickly and accurately

PH
Answered by Patrick H. Maths tutor

2958 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.


Three girls and four boys are seated randomly on a straight bench. Find the probability that the girls sit together and the boys sit together.


Finding complex numbers using DeMoivre's Theorem


If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning