An elastic wire suspended from a workbench has a 2kg mass attached to its free end. The wire changes in length by 2cm. Calculate the elastic potential energy stored in the wire.

Using Hooke's law (F = k * e) we can find the spring constant. Rearranging for k, we find that k = (9.81 * 2)/0.02 = 981 N/m. To calculate this we needed to find the force acting on the wire (F = mg) and also convert our extension into meters. In a session I would draw a diagram of the system showing the forces acting and the extension of the wire.We can then substitute this into the equation for elastic potential energy: E = 0.5 * k * e^2 = 0.196 J.

JG
Answered by James G. Physics tutor

2097 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

(IGCSE, Jan 2013, q8 adapted) The astronaut David Scott dropped a hammer and a feather from rest, at the same time and from the same height on the moon. The hammer and the feather landed at the same time. Why?


What is the difference between nuclear fusion and fission?


A satellite is in orbit of the Earth, and moves at a constant orbital speed of 3055.5m/s. If it is at an altitude of 35786km, calculate the time period for a complete cycle, giving your answer in hours. Answer should be given in in 3 significant figures.


What's the difference between distance and displacement


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning