An elastic wire suspended from a workbench has a 2kg mass attached to its free end. The wire changes in length by 2cm. Calculate the elastic potential energy stored in the wire.

Using Hooke's law (F = k * e) we can find the spring constant. Rearranging for k, we find that k = (9.81 * 2)/0.02 = 981 N/m. To calculate this we needed to find the force acting on the wire (F = mg) and also convert our extension into meters. In a session I would draw a diagram of the system showing the forces acting and the extension of the wire.We can then substitute this into the equation for elastic potential energy: E = 0.5 * k * e^2 = 0.196 J.

JG
Answered by James G. Physics tutor

1872 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What is terminal velocity?


An electric heater has a power of 1000W. It is connected to mains electricity (230V). The heater is equipped with an Earth wire. a) Calculate the current in the heater. b) Explain the role of the earth wire as a safety feature.


Calculate the acceleration if a force of 500N is exerted on a mass of 20kg


Do batteries contain current, which comes out when they are in a circuit?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences