An elastic wire suspended from a workbench has a 2kg mass attached to its free end. The wire changes in length by 2cm. Calculate the elastic potential energy stored in the wire.

Using Hooke's law (F = k * e) we can find the spring constant. Rearranging for k, we find that k = (9.81 * 2)/0.02 = 981 N/m. To calculate this we needed to find the force acting on the wire (F = mg) and also convert our extension into meters. In a session I would draw a diagram of the system showing the forces acting and the extension of the wire.We can then substitute this into the equation for elastic potential energy: E = 0.5 * k * e^2 = 0.196 J.

JG
Answered by James G. Physics tutor

1894 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What are Balanced Forces?


What is the equation of an accelerated body moving in one dimension?


When the current through an ohmic conductor is 2A, the potential difference across it is 6V. What is the potential difference across the same ohmic conductor when the current is increased to 3A?


explain the relationship between resistance and voltage in a filament lamp


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning