Using your knowledge of periodicity and atomic structure, why does the first ionisation energy decrease moving down a group yet increase moving along a period in the periodic table?

Moving down a group means that the shielding of the outer electrons is increased due to the greater number of inner electron shells within the atom - these are between the nucleus and the outer electrons. As a result, the force of attraction between the positively charged protons and the negatively charged outer electrons is reduced - it requires less energy to remove the outer electrons, hence the first ionisation energy decreases down a group. Moving along a group, the trend in first ionisation energy is to increase due to a greater positive nuclear charge within the nucleus. The nuclear charge increases along a group due to more protons being in the nucleus of each atom. As a result, the outer electrons are more strongly attracted to the nucleus of the atom - more energy is required to remove the first electron. Another factor causing this trend is shielding. Along a period, nuclear charge increases due to more protons so the outer electrons are held tighter/closer to the nucleus and as such require more energy to be removed.

AI
Answered by Alfie I. Chemistry tutor

1748 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Predict whether the lattice energy of magnesium oxide, MgO, is more or less exothermic than the lattice energy of magnesium sulfide, MgS. Justify your answer in terms of the sizes and the charges of the ions involved.


State the qualitative tests to distinguish between halide ions in solution.


What is electronegativity?


Describe the products of the following Friedl-Crafts substitution and explain the role of the AlCl3 in the reaction: C6H6 + CH3C(O)Cl + AlCl3 = ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning