According to Newton's third law, every action has an equal and opposite reaction. Why then does a box move when I push it? Shouldn't the two opposing forces cancel out to a zero net force?

The key to this question is realising that the action and corresponding reaction refer to forces that act on different objects. When I push the box, I exert a force on the box. As a result of this force, the box then also exerts an equal and opposite force on my hands. These two forces are not acting on the same object, as the force that I exert on the box influences the box's motion, and the force that the box exerts on my hands influences my hands' motion. These forces do not cancel because they influence the motion of different objects. Only forces that act on the same object can cancel to a zero net force. The force from my hands on the box can cancel out with other forces on the box, but not with forces on different objects (such as the force on my hands).

ES
Answered by Ellen S. Physics tutor

6303 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

On a day with no wind, a large object is dropped from a tall building. The object experiences air resistance during its fall to the ground. State and explain, in terms of the forces acting, how the acceleration of the object varies during its fall.


Compare the wavelength, frequency and speed of an emitted and reflected microwave


Waves on the surface of water are transverse waves. State one other example of a transverse wave.


Resistors of 5 ohms and 10 ohms are connected in series with a battery supplying 3 volts. What is the total resistance ? And calculate the current in the circuit.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning