Define the term empirical formula. Determine the molecular formula of a compound with the empirical formula C2H4O and a relative molecular mass of 176.0

Empirical formula is the simplest whole number ratio of atoms of each element in a compound. With the empirical formula and relative molecular mass, we can determine the actual molecular formula of a compound (which is the actual whole number of atoms of each element in the compound).
To determine the molecular formula of a compound, we first have to calculate the Mr (molecular mass) of the empirical formula. Looking at the periodic table, we can see the relative atomic mass of each element (the Ar) - carbon is 12.0, hydrogen is 1.0 and oxygen is 16.0. As the empirical formula is C2H4O we have to take into account the number of each element in this molecule - therefore we do the following calculation; (2 x 12.0) + (4 x 1.0) + (1 x 16.0) = 44.0 - because the molecule contains 2 atoms of carbon, 4 atoms of hydrogen and 1 of oxygen.Now that we have calculated the Mr of the C2H4O, we can divide the given relative molecular mass of 176.0 by 44.0 to find the ratio. 176.0/44.0 = 4. We therefore know that the Mr of the compound is 4 times the Mr of the simplest whole number ratio; the compound we have been asked to find is therefore C8H16O4

Answered by Chemistry tutor

6214 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is the trend in electronegativity of group 7?


What is a test for iron(III) compounds?


What is meant by the term optical isomerism?


Explain why the boiling point of PH3 is lower than the boiling point of AsH3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences