Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).

  1. Identify de Moivre's Theorem: (cos(x) + isin(x))n = cos(nx) + isin(nx) 2) Deduce the correct value of n for the given problem. In this example we set n=3 3) Expand the LHS (usually by a binomial expansion). In this example we have (cos(x) + isin(x))3 = cos3(x) + 3icos2(x)sin(x) - 3cos(x)sin2(x) - isin3(x) = cos(3x) + isin(3x) 4) Equate the real parts. Here we have cos(3x) = cos3(x) - 3cos(x)sin2(x) 5) Equate the imaginary parts. Here we have sin(3x) = 3cos2(x)sin(x) - sin3(x) 6) Use these results to derive identity. In this case we divide sin(3x) by cos(3x).
OL
Answered by Ollie L. Further Mathematics tutor

4259 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Further Maths: How do you find the inverse of a 2 x 2 matrix?


Explain why the equation tanx + cotx = 1 does not have real solutions.


Why is the argument of a+bi equal to arctan(b/a)?


The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning