Find all square roots of the number 3 + 4i.

To start we need to set up the equation described by the question. Our answers should be in the form a + bi (where a and b are real), and since any answers are the root of 3 + 4i we can write down the following equation. (a + bi)^2 = 3+4i. If we expand the bracket we get this, a^2 + 2abi + b^2*i^2 and since i^2 is -1 we have a^2 - b^2 + 2abi = 3 + 4i. Since the imaginary parts of both sides of the equation must be the same and the real parts must also be the same we have two separate equations. a^2 - b^2 = 3 and 2ab = 4. We need to solve these equations simultaneously to give a and b. By rearranging the second we can get b in terms of a. 2ab = 4 so ab =2 so b = 2/a. Then we can plug this into the first equation to give a^2 - 4/a^2 = 3. We can now multiply both sides by a^2 to get rid of the fraction a^4 - 4 = 3a^2  therefor a^4 - 3a^2 -4 = 0. We can factorise this equation by treating it as a quadratic with a^2 as the variable, this gives us(a^2 - 4)(a^2 + 1) = 0 thus a^2 = 4 or a^2 = -1 this means a = 2 or a = -2 or a = i or a = -i. Since we defined a and b as being real at the beginning we know a = 2 or a = -2. By using the equation 2ab = 4 we get b = 1 or -1. This gives us the roots 2 + i and -2 - i. 

Answered by Further Mathematics tutor

3016 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I express complex numbers in the form reiθ?


How do you prove the formula for the sum of n terms of an arithmetic progression?


Explain why the equation tanx + cotx = 1 does not have real solutions.


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences