A 1000 cm3 container of ammonia (NH3) has a mass of 20.7g, it is stored at room temperature (298 K). When empty the container has a mass of 20.0 g, calculate the pressure inside the container in kPa to an appropriate number of significant figures.

  1. Using PV = nRT, make a note of the information you have, what you can calculate and what you need to find. P <-- need to find thisV = 1000 cm3n <-- can be calculated from mass = mr X mol since we know massR = 8.314 J K-1 mol-1 (from data book)T = 298 K2) convert 1000 cm3 to m3 (SI units)1000/ (100)3 divide by 100 for cm --> m conversionneed to do this 3x since volume has 3 dimensions1000/ (100)3 = 10-3 m3
    3) n (number of moles) = mass/ mr = (20.7g-20.0g)/14 g mol-1 = 0.05 mol4) now we have everything we need in SI unitsP <-- need to find thisV = 10-3 m3n = 0.05 molR = 8.314 J K-1 mol-1 (from data book)T = 298K
    5) P = nRT/V (rearrange equation to make P the subject)P = (0.05 mol x 8.314 J K-1 mol-1 x 298 K)/ 10-3 m3P = 123,879 Pa or 124 kPa
NB
Answered by Natalie B. Chemistry tutor

2347 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

X, a gas, has a mass of 0.270g and is present in a gas syringe with a volume of 105.0cm^3 at 97C and 100kPa. Calculate the Mr of X. (5 marks)


Balance the following redox equation: PbO2 + SO32- ==> Pb2+ + SO42-


Plan out a 4 step organic synthesis to form N-methyl Butanamide from 1-Bromopropane. Include relevant reagents and conditions for each reaction. Include 1 mechanism for one of the stages.


A naturally occurring sample of the element boron has a relative atomic mass of 10.8 In this sample, boron exists as two isotopes. Calculate the percentage abundance of 10B in this naturally occurring sample of boron.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning