Explain how nucleophilic substitution for a haloalkane actually occurs?

In a haloalkane, not all of the bonds are the same. We have to consider the fact that the halogen atom (for instance a bromine atom) is more electronegative than either carbon or hydrogen atoms, and has a tendency to withdraw electron density towards itself. This makes the C-Br bond polarised. The carbon atom has had electron density removed from itself, and now has a partial positive charge. Thus, it is more susceptible to attack by a species with a high electron density, or a negative charge. Such a species is called a nucleophile. A cyanide ion, for example, has a formal negative charge on the carbon.As like and unlike charges attract, the negative cyanide ion will attack the positive carbon atom, and in doing so will displace the bromide ion. This is nucleophilic substitution.

NK
Answered by Naman K. Chemistry tutor

1858 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe the difference in melting points for the elements Sodium and Magnesium


Bethan prepared some ethoxyethane (line 6) by reacting ethanol with concentrated sulfuric acid. She used 69g of ethanol (Mr=46) and obtained a 45% yield of ethoxyethane (Mr=74). Calculate the mass of ethoxyethane obtained.


For the reaction 2H2 + O2 -- 2H2O, how do I give an equation for the equilibrium constant in terms of the concentrations of products and reactants involved?


I do not understand Le Chatelier's Principle - please help!


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences