Explain the relative resistance to bromination of benzene compared with alkenes.

Benzene has a delocalised pi system in which p orbitals of all carbon atoms overlap above and below the carbon ring. Alkenes, however, have localised pi-orbital overlaps between two carbon atoms. The electron density in the localised system is much greater than the delocalised system in benzene. This greater electron density in alkenes allows a dipole to be induced more readily in bromine and thus makes alkenes more susceptible to electrophilic attack. The electron density in benzene's pi system is not significant enough to produce an electrophile, and thus benzene does not readily undergo electrophilic substitution.

JW
Answered by Jasmine W. Chemistry tutor

16009 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Calculate the pH change when water is added to 25.0 ml of 0.250M NaOH to form a 1.00l solution.


State and explain the general trend in the first ionisation energies of the Period 2 elements Lithium to Fluorine.


How and why does sp3 hybridization occur?


The intermolecular interactions between halogen molecules are Van der Waals' forces. Explain how these Van der Waal's forces arise between halogen molecules.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences