Calculate the pH of a 4.00 x 10^-2 mol dm^-3 solution of Ba(OH)2

The easiest way to answer this question is by using the equation pH + pOH = 14. 

Firstly, we need to work out the number of moles of OH- in the solution. As the formula for Ba(OH)2  shows that it has 2 moles of OH- for every 1 mole of Ba+ , the number of moles of OH- ions will be equal to twice the concentration of the solution. 

Therefore, there are 8.00 x 10-12 moles of OH- ions in the solution.

As pOH= -log (OH-), pOH = -log (8.00 x 10-12

Therefore pOH= 1.097

By rearranging the formula pH + pOH = 14, we get 14-pOH= pH

Therefore, 14-1.097= 12.9

The pH of the solution is 12.9

CM
Answered by Chloe M. Chemistry tutor

14098 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

What is the VSEPR theory?


Explain why successive ionization energies of an element increase


What is the difference between SN1 and SN2 reactions, and how do you determine via which mechanism the reaction will proceed?


Which intermolecular forces do I need to know about and how do they differ in strength?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning