Calculate the pH of a 4.00 x 10^-2 mol dm^-3 solution of Ba(OH)2

The easiest way to answer this question is by using the equation pH + pOH = 14. 

Firstly, we need to work out the number of moles of OH- in the solution. As the formula for Ba(OH)2  shows that it has 2 moles of OH- for every 1 mole of Ba+ , the number of moles of OH- ions will be equal to twice the concentration of the solution. 

Therefore, there are 8.00 x 10-12 moles of OH- ions in the solution.

As pOH= -log (OH-), pOH = -log (8.00 x 10-12

Therefore pOH= 1.097

By rearranging the formula pH + pOH = 14, we get 14-pOH= pH

Therefore, 14-1.097= 12.9

The pH of the solution is 12.9

Answered by Chloe M. Chemistry tutor

10397 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Describe the different types of isomers.


What is the most effective way to balance redox equations which include hydrogen and oxygen?


What is the VSEPR theory?


Describe and compare three features of the structure and bonding in the three allotropes of carbon: diamond, graphite and C60 fullerene.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy