Calculate the pH of a 4.00 x 10^-2 mol dm^-3 solution of Ba(OH)2

The easiest way to answer this question is by using the equation pH + pOH = 14. 

Firstly, we need to work out the number of moles of OH- in the solution. As the formula for Ba(OH)2  shows that it has 2 moles of OH- for every 1 mole of Ba+ , the number of moles of OH- ions will be equal to twice the concentration of the solution. 

Therefore, there are 8.00 x 10-12 moles of OH- ions in the solution.

As pOH= -log (OH-), pOH = -log (8.00 x 10-12

Therefore pOH= 1.097

By rearranging the formula pH + pOH = 14, we get 14-pOH= pH

Therefore, 14-1.097= 12.9

The pH of the solution is 12.9

CM
Answered by Chloe M. Chemistry tutor

13335 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Define the an acid/base according to the Bronsted-Lowry and Lewis theories. Support with equation to illustrate an acid-base reaction for each theory, identifying them clearly. Also state the bond type formed in an Lewis acid-base reaction.


What does the Maxwell-Boltzmann distribution illustrate?


What is the limiting reagent and thus the mass of product for the reaction: P4O10 + 6H2O --> 4H3PO4 if 5.00 g of P4O10 react with 1.50 g of water?


Explain the bonding in benzene, and hence its greater stability


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning