Answers>Maths>IB>Article

Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?

There are two essential tricks to grasp in this question. Firstly, since the equation has only one solution, the Discriminant that will be required would equal 0. Secondly, since we are given f(x) = 2 we can write it in a different form: logk k2. This will allow us to cancel the logarithms. Then it is a basic quadratic function. The result would be +- square root of 3, but given that k is larger than 0, it automatically selects the positive value only.

JS
Answered by Jaroslav S. Maths tutor

5020 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

integrate arcsin(x)


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


Differentiate implicitly with respect to x the equation x^3*y^5+3x=8y^3+1


Find out the stationary points of the function f(x)=x^2*e^(-2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning