Answers>Maths>IB>Article

Consider f (x) = logk (6x - 3x 2 ), for 0 < x < 2, where k > 0. The equation f (x) = 2 has exactly one solution. What is the value of k?

There are two essential tricks to grasp in this question. Firstly, since the equation has only one solution, the Discriminant that will be required would equal 0. Secondly, since we are given f(x) = 2 we can write it in a different form: logk k2. This will allow us to cancel the logarithms. Then it is a basic quadratic function. The result would be +- square root of 3, but given that k is larger than 0, it automatically selects the positive value only.

JS
Answered by Jaroslav S. Maths tutor

4954 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


Given that sin(x) + cos(x) = 2/3, find cos(4x)


How do I integrate the volume of revolution between 0 and pi of y=sin(x)?


Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning