Using de Moivre's theorem demonstrate that "sin6x+sin2x(16(sinx)^4-16(sinx)^2+3)"

Consider, (cosX+isinX)6 using binomial expansion we find that this = "cos6X + 6icos5XsinX - 15cos4Xsin2X - 20icos3Xsin3X + 15cos2Xsin4X + 6icosXsin5X - sin6X". Next, by using de Moivre's theorem (r(cos(X)+isin(X)))n = rn(cos(nX)+isin(nX)) we find that (cosX+isinX)6 is also = cos6X+isin6X. So in a brief summary the whole binomial expansion is = to cos6X+isin6X.Now, by looking at the imaginary parts of both sides we can see that "isin6X = 6icos5XsinX - 20icos3Xsin3X + 6icosXsin5X" I'm seeing some lovely factors that I'd love to pull out, so lets! (I've also removed the i as it was common on both sides)"sin6X = 2cosXsinX(3cos4X - 10cos2Xsin2X + 3sin4X)" by using our trig identities we know that 2cosXsinX = sin2X and that cos2X = 1 - sin2X so, "sin6X = sin2X(3(1 - sin2X)2 - 10(1 - sin2X)sin2X + 3sin4X)" Expanding the brackets we end up with "sin6X = sin2X( 3 - 6sin2X + 3sin4X - 10sin2X + 10sin4X + 3sin4X)" which leaves us to our final line! that "sin6X = sin2X( 3 + 16sin4X - 16sin2X)" proved using de Moire's theorem

Answered by Further Mathematics tutor

3853 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


Why does matrix multiplication seem so unintuitive and weird?!


Finding modulus and argument of complex number (x+iy)


Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences