The equation x^2 + (k-5)x + 1 = 0 has equal roots. Determine the possible values of k.

So the first part of this question is regarding your knowledge and understanding on the subject matter. You should know that for real and equal roots, (b2 - 4ac)=0. (For real and unequal roots, it is >0 and for non-real roots, it is <0.)
Once we know this, we can find the values of a, b and c using the equation. Where a =1, b=(k-5) and c=1.Next, we need to solve for (b2 - 4ac)=0.
(k-5)2- (411) = 0 (k-5)2- 4 = 0
The next step is to expand the brackets:
k2 - 10k +25 - 4 = 0k2 - 10k +21 = 0
Finally, we are left with an equation which can be factored to find the values of k, as follows:
(k-7) (k-3) = 0
Therefore, k = 7 or k =3.



Answered by Maths tutor

5654 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Given f(x) = (x^(2)+(3*x)+1)/(x^(2)+(5*x)+8), find f'(x) and simplify your answer.


Given that, dy/dx = 6x^2 - 3x + 4, and y = 14 when x = 2, express y in terms of x.


How do you solve integrals which are the result of a chain rule e.g. the integral of sin(2x+1)


How do I find the dot product of two 3-dimensional vectors


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning