How to solve a standard first order differential equation?

First we must ensure that the differential is i the standard form of y' + p(x) y = f(x)The we use the integration factor I(x) = e to the integral of p(x)we then realise that if we differentiate this we will get I'(x) = p(x)* e to the integral of p(x) which is equal to I(x)*p(x)we then multiply the equation through by I(x) giving i(x) y' + I(x)*p(x) y = f(x) I(x)the left hand side can be simplified by the product rule of differentiation and we can then integrate through to find our answer

JB
Answered by Joe B. Further Mathematics tutor

2306 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Define tanh(t) in terms of exponentials


How do I apply mathematical induction to answer questions


Prove that sum(k) from 0 to n is n(n+1)/2, by induction


Show that the square of any odd integer is of the form (8k+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences