A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?

As the bar magnet enters and exits the coil, there is a change in magnetic flux linkage through the coil. According to Faraday's law, an EMF is induced across the coil that is proportional to the rate of change of magnetic flux linkage. EMF=-N*dΦ/dt, where N is the number of turns of the coil, Φ is the magnetic flux and t is time. This EMF is measured by the voltmeter. If the magnet falls from a greater height, it will be accelerating downwards for a longer time. Thus, its speed will be greater when it reaches the coil. Hence, the rate of change of magnetic flux linkage in the coil will be greater. In other words, more magnetic field lines of the magnet will be cutting the coil per second. This will result in a greater induced EMF and the reading of the voltmeter will be greater.

AA
Answered by Andrea A. Physics tutor

10705 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A cyclist travels along a straight flat road. Describe the condition required for the cyclist to continue traveling along the road at a constant speed. How does this condition change if the cyclist travels up a slope?


A coal fire is burning in the bottom of a furnace, with a chimney above it. Air moves into the furnace from an opening at the bottom and up the chimney. Describe how the process of convection causes this air movement.


A charged particle in a cyclotron moves in a circle with radius 5mm. If the field in the cyclotron is 0.06 T and the velocity of the particle is 2.4x10^7, what is the charge-mass ratio of the particle?


Find the wavelength of a radio wave if the frequency is 11 x 10 ^6 Hz and the speed of radio waves in air is 3 x 10 ^8 m/s.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning