A coil is connected to a voltmeter. A bar magnet, initially held above the coil, is left to fall into the coil. Explain why the voltmeter shows a reading. How will the reading of the voltmeter be affected if the magnet is dropped from a greater height?

As the bar magnet enters and exits the coil, there is a change in magnetic flux linkage through the coil. According to Faraday's law, an EMF is induced across the coil that is proportional to the rate of change of magnetic flux linkage. EMF=-N*dΦ/dt, where N is the number of turns of the coil, Φ is the magnetic flux and t is time. This EMF is measured by the voltmeter. If the magnet falls from a greater height, it will be accelerating downwards for a longer time. Thus, its speed will be greater when it reaches the coil. Hence, the rate of change of magnetic flux linkage in the coil will be greater. In other words, more magnetic field lines of the magnet will be cutting the coil per second. This will result in a greater induced EMF and the reading of the voltmeter will be greater.

AA
Answered by Andrea A. Physics tutor

9985 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What's the difference between velocity and speed?


Alice and Bob are sat on a seesaw. The seesaw is in static equilibrium. Alice weighs 500N and is sat 0.5m to the left of the pivot. If Bob weighs 800N, how far from the pivot on the right is he sat? What happens if Bob moves closer to the pivot?


An airplane accelerates steadily from rest to 355 m/s, after travelling a distance of 105,000 m. How long, in minutes, does it take the airplane to reach this speed?


If newton's 3rd law is true how does anything move?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences