A roller coaster car starts stationary at the top of a downwards slope. At the bottom of the slope, it has a speed of 30m/s. Use the conservation of energy to find the vertical height of the slope. (Use g=10 m/s^2)

From the conservation of energy, we know that the change in gravitational potential energy (GPE) is equal to the change in kinetic energy (KE). GPE=mgh and KE=(1/2)mv^2. At the top of the slope, the car starts stationary so has KE=0 and at the bottom of the slope GPE=0. Therefore the GPE at the top equals the KE at the bottom. mgh=(1/2)mv^2. Divide both sides by the mass (m) to get gh=(1/2)v^2 and rearrange to find h, h=v^2/2g. Substitute in the numbers to find h=45m (don't forget units!)

TM
Answered by Tamsin M. Physics tutor

3337 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Explain Newton's laws of motion


What is the difference between a longitudinal and a transverse wave?


How many times further away from the pivot point of a seesaw does someone of double the weight have to sit in order for the it to balance?


Write the equations of motion for constant acceleration and describe each term involved. Explain how to apply these equations of motion to calculate the horizontal and vertical components of a projectile moving under the force of gravity only.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences