Periodicity shows a fairly smooth increasing trend across a period for ionisation energy. However, between groups 2 & 3 and groups 5 & 6, the trend doesn't appear to be followed. Using your knowledge of chemistry, explain why the trend isn't followed here

For elements in group 2, their valence electrons consist of "ns2" where n is the principle quantum number/shell number. However, for elements in group 3, their valence electrons consist of "ns2np1". As the p-orbitals are higher in energy than the s-orbitals, this makes the p electron easier to remove and hence required less energy input - resulting a slightly lower 1st ionisation energy than expected. For elements in group 5, they all have singly filled p-orbitals ("np3), but those in group 6 have one p-orbital with a pair of electrons occupying it ("np4"). This is known as an orbital pair with anti-spin. The pairing of electrons within an orbital causes repulsion between those occupying it - this highers the electrons energy. As their energy is now higher, it is easier to remove the electron as a result, which lowers the 1st ionisation energy.

GW
Answered by George W. Chemistry tutor

1881 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain the geometry and bond angles in a NH3 molecule


Q3. A third beaker, C, contains 100.0 cm^3 of 0.0125 mol/dm^3 ethanoic acid ( Ka = 1.74 × 10^−5 mol/dm^3 at 25 ºC). Write an expression for Ka and use it to calculate the pH of the ethanoic acid solution in beaker C.


Part 2: from the empirical formula, calculate the molecular formula if the molecular weight of the substance is 180 g/mol


PharmaPlus, a drug developer, is required by law to carry out clinical trials on the novel drug ‘AccuPreasure’. AccuPreasure is to be marketed for control of high blood pressure. Give three questions that clinical trials are designed to answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning