The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.

In the case c2>4mk, the characteristic equation has two distinct real roots; this represents overdamping. The system does not oscillate, and x approaches zero as time approaches infinity.In the case c2=4mk, the characteristic equation has a repeated real root; this represents critical damping. The system does not oscillate and returns to its equilibrium position in the shortest possible time; x approaches zero as time approaches infinity.In the case c2<4mk, the characteristic equation has two complex routes; this represents underdamping. The system oscillates with an exponentially decreasing amplitude; the amplitude of oscillations approaches zero as time approaches infinity.

OG
Answered by Oliver G. Further Mathematics tutor

10762 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Find the first three non-zero terms of the Taylor series for f(x) = tan(x).


What is the complex conjugate?


Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences