Are the integers a group under addition? How about multiplication?

There are 4 things we need for a group: associativity, the existence of an identity, inverses in the group and closure. The integers are definitely associative under this operation as addition is associative as a + (b+c) = (a +b) + c. the identity exits as 0 is an integer and for any integer A, A + 0 = A. The inverse exists in the integers as if A is in the integers, - A is too and A + (-A) = 0 = identity, and finally it is also closed as for two integers A and B, A + B is also an integer. Therefore it is a group.For multiplication it is not a group, as the identity for multiplication on the integers is 1, but say we choose an integer A, then the inverse is 1/A as A * 1/A = 1 = identity, but 1/A is in general not an integer, so the integers under multiplication do not form a group.

DC
Answered by Damon C. Further Mathematics tutor

4767 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences