explain how a parachutist reaches a constant speed using the concept of terminal velocity.

1 - parachutist is in plane, they are stationary so according to Newton's first law the forces acting on them (weight downwards and reactionary force upwards) are equal. 2 - parachutist leaves the plane. Having jumped out they are now falling due to their weight (mg) which is much bigger than the air resistance acting upwards. Because of this their net force is acting downwards, meaning they accelerate. (Newton's second law, F = ma).3 - they reach terminal velocity because as they are accelerating the air resistance acting on them increases until it balances the weight downwards. Since all forces are balanced they are no longer accelerating and have reached terminal velocity. (Newton's first law).(Diagrams accompany this explanation).

AK
Answered by annabel k. Physics tutor

7383 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A kettle requires 2400 Coulombs of charge to pass through its heating element, with a resistance of 6 Ohms, in a time of 200 seconds in order to boil the water inside it. Calculate the current flowing and the power of the kettle.


Photons with 605 THz frequency strike metal of 1.2eV work function. Calculate the maximum energy of photoelectrons and their velocity. What amount of energy is necessary to stop all photoelectrons? (Planck's constant. electron mass and charge are given)


Do batteries contain current, which comes out when they are in a circuit?


As a student rubs his feet along the carpet in his living room, he becomes charged. After this he places his hand on a metal radiator and receives an electric shock. Explain what charge the student obtains, why, and why he receives a shock.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning