A complex number z has argument θ and modulus 1. Show that (z^n)-(z^-n)=2iSin(nθ).

This problem wants you to use De Moivre's theorem to prove a trigonometric identity.We will tackle this problem by taking the left hand side and using theorems and manipulation to show it is equivalent to the right hand side. Since we have been given the modulus and argument, and the right side of the identity involves a trig function, it is logical to rewrite z in its polar form: z=cosθ+isinθ. De Moivre's theorem tells us that z^n=cos(nθ)+isin(nθ) and that z^-n=cos(-nθ)+isin(-nθ). Since the right side of the identity has no (-n) in it we need to find away to get rid of that negative. Recall firstly that cosine is an even function, meaning that cos(-x)=cosx, and secondly that sine is an odd function meaning sin(-x)=-sinx. Applying this to z^-n gives us z^-n=cos(n θ)-isin(n θ).Plugging this back into the left side of the identity gives z^n-z^-n=(cos(n θ)+isin(n θ))-(cos(n θ)-isin(n θ))Which simplifies to give z^n-z^-n=2isin(n θ)

GC
Answered by George C. Further Mathematics tutor

4987 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


FP1 June 2016 Edexcel Exam Paper Question 7


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences