Why does butan-2-ol have no effect on plane polarised light?

Butan-2-ol can be produced as a result of reducing butanone with NaBH4. The hydride ion in NaBH4 is used as a nucleophile which can attack the C on the (C=O )either above or below the plane, depending on the orientation of the double bond. A dative covalent bond is formed. The double bond (C=O) is broken as electrons are transferred to the oxygen, leaving it negatively charged. There is thus an electrostatic attraction between the O- ion and an H+ ion, ultimately producing butan-2-ol. As the nucleophile can attack from above or below the plane, there is an equal probability that each of the two enantiomers of butan-2-ol will be produced in equal amounts, thus generating a racemic mixture. Regardless of the chiral centre in butan-2-ol, the equal amounts of opposing enantiomers means they will rotate plane polarised light in different directions by the same amount - cancelling their individual effects. Butan-2-ol is therefore not optically isomeric in this instance.

SK
Answered by Sunzida K. Chemistry tutor

8489 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

(See word doc for complete info) An experiment is carried out whereby the decomposition of hydrogen iodide is observed. Given the equilibrium compositions of each species, calculate the initial mass of hydrogen iodide.


Write an equation for the complete combustion of C9H20


A reaction, A + B -> C, is considered second order with respect to A and first order with respect to B. What is the effect of simultaneously doubling the concentration of A and B on the rate of reaction?


Explain the decrease in reactivity of Group 2 elements as you go down the periodic table


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning