Find the magnitude of the force on an electron that is travelling with velocity 2 x 10^4 ms^(-1) in the x direction through a uniform magnetic field of strength 2T in the y direction.

This question tells us we only need to consider the magnitude of the force, and since the magnetic field and electron's velocity are perpendicular, we can simply use the equation

F = Bqv.

We have B = 2 Tq = 1.6 x 10-19 (the charge of an electron) and v = 2 x 10ms-1.

Substituting these values into the equation gives 

F = 2 * (1.6  x 10-19 ) * (2 x 104) = 6.4 x 10-15 N   (Remember your units!)

SH
Answered by Sally H. Physics tutor

17792 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why is it important that the baryon and lepton numbers of an interaction are conserved?


Explain why excited atoms only emit certain frequencies of radiation after an electron collides with the atom


what depends if the universe is expanding or not


A small ball is projected with speed 15 m/s at an angle of 60 degrees above the horizontal. Find the distance from the point of projection of the ball at the instant when it is travelling horizontally.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning