Find the magnitude of the force on an electron that is travelling with velocity 2 x 10^4 ms^(-1) in the x direction through a uniform magnetic field of strength 2T in the y direction.

This question tells us we only need to consider the magnitude of the force, and since the magnetic field and electron's velocity are perpendicular, we can simply use the equation

F = Bqv.

We have B = 2 Tq = 1.6 x 10-19 (the charge of an electron) and v = 2 x 10ms-1.

Substituting these values into the equation gives 

F = 2 * (1.6  x 10-19 ) * (2 x 104) = 6.4 x 10-15 N   (Remember your units!)

SH
Answered by Sally H. Physics tutor

17270 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What are vectors?


Light with a frequency of 200nm is shone on a sodium plate with a work function of 2.28eV and electrons start escaping the surface of the plate due to the photoelectric effect. What is the maximum kinetic energy of one of these electrons in eV?


State Ohm's Law and the main characteristics of ohmic conductors, giving examples


A boy (25kg) and a girl (20kg) are playing on a see-saw which is 4m long. If the boy sits 1m from the centre on the left side and the girl 2m from the centre on the other, which direction will the see-saw will rotate around its centre?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning