Find the magnitude of the force on an electron that is travelling with velocity 2 x 10^4 ms^(-1) in the x direction through a uniform magnetic field of strength 2T in the y direction.

This question tells us we only need to consider the magnitude of the force, and since the magnetic field and electron's velocity are perpendicular, we can simply use the equation

F = Bqv.

We have B = 2 Tq = 1.6 x 10-19 (the charge of an electron) and v = 2 x 10ms-1.

Substituting these values into the equation gives 

F = 2 * (1.6  x 10-19 ) * (2 x 104) = 6.4 x 10-15 N   (Remember your units!)

SH
Answered by Sally H. Physics tutor

16983 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A railway car of mass m1 travelling at a velocity of v1 collides with a second car of mass m2 travelling at v2 and the two join together. What is their final velocity?


How does the photoelectric effect provide evidence for a particulate nature of electromagnetic radiation?


what depends if the universe is expanding or not


When a 470 micro farad capacitor is discharged through a fixed resistor R, the pd across it decreases by 80% in 45 s. Calculate the time constant of the circuit


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences