Describe energy transformations in a oscillating pendulum, which undergoes simple harmonic motion. How this implies the velocity at critical (lowest and highest) points?

Our object will have a combination of potential energy (due to it's position relative to the ground) and kinetic energy (due to it's velocity).Consider the potential energy first. It depends on the height of the pendulum, it's mass and the gravitational acceleration (Ep = mgh), so it will have a zero value at the lowest point (as h=0), and the maximum value at the highest points (other terms are constants). Recall the law of conservation of energy: energy can be transformed from potential to kinetic and vise versa, but the total energy always stays the same. So the kinetic energy is minimum at the highest points and maximum at the lowest point of oscillation. In general, as the pendulum goes through a half cycle starting from equilibrium position, energy is transferred from kinetic, to potential, and then back to kinetic. As kinetic energy is directly proportional to the square of velocity of an object (Ek=0.5mv2), it will therefore have maximum velocity at it's lowest point and velocity will be zero at the highest points. (More detailed analysis can be done by considering restoring force and drawing energy against displacement graphs.)

KK
Answered by Ksenija K. Physics tutor

2663 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cylindrical rod of radius 7mm and Young’s Modulus 70 GPa has a weight F applied to it. The material experiences a strain of 0.2%. What force has been applied?


What are the SUVAT equations and how can I remember them?


How many joules of heat energy are required to raise the temperature of 10kg of water from 22⁰C to 27⁰C? (The Specific Heat Capacity of water is 4200 Jkg^-1⁰C^-1)


How could I calculate the internal resistance of a cell?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning