Answers>Maths>IB>Article

Find the coordinates of the minimum or maximum of the function f(x) = 3x^2 -2x +9 and determine if it's a minimum or maximum.

To find the minimum or maximum we need to find a point on the function where its slope is zero. So, we differentiate f(x) and set it equal to zero: f'(x)=0, f'(x) = 6x -2 = 0, x=1/3 Substitute into f(x) to get the y coordinate: f(1/3) = 3 (1/3)2 - 2(1/3) + 9 = 3/9 - 6/9 +81/9 = 78/9 So we know that at the point (1/3, 78/9), f(x) has a minimum or maximum. But which one is it? For that we look at the second derivate, which will tell us about the curvature of the graph. If the second derivate is positive, the graph is concave up, which implies that the point we just found is a minimum. If the second derivative is negative, the function is concave down, which means that we found the maximum. f''(x) = 6 This is positive so at the point (1/3, 78/9), the function is at a minimum.

LB
Answered by Lilla B. Maths tutor

1696 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the most difficult topic in HL Maths?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.


What method of series convergence test is the correct test?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning