The equation of a curve is y = x^2 - 5x. Work out dy/dx

This is an example of differentiation. This can be useful in many concepts, one being finding the gradient of a line or curve at a certain point. To differentiate these types of equations, the rule is to multiply the front by the power and to take one from the power!y = x^2 - 5xWe will take each part separately. Starting with x^2. We multiply the front (which is 1) by the power (which is 2), therefore the constant at the front is now 2. We take one from the power, so 2 - 1 = 1. Therefore the derivative of x^2 is 2x.Next we take 5x. Multiply the front (5) by the power (1), and take 1 from the power (1 - 1 = 0). Therefore the derivative of 5x is 5.Now, we put it all together! dy/dy = 2x - 5!

VL
Answered by Venetia L. Further Mathematics tutor

8524 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Can you explain induction and go through an example?


Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?


How to solve the inequality 1 - 2(x - 3) > 4x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning