A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.

Question: A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4 metres. Calculate the maximum speed of the particle. Anwer: v22(a2-x2), v is the linear velocity of the particle, ω is the angular velocity of the particle, a is the amplitude and x is the distance between the position of the particle and the point of centre of oscillation. The maximum speed of the particle will occur when x is 0. Therefore v=ωa by taking the square root of both sides. we know a=o.4 so v=0.4ω. Now we need to find ω.we also know that ω=2pi/(period of the motion)=(2pi)/(3pi/5)=10/3. Now we know the value of ω. Now we can calculate v, v=(0.4ω)=0.4*10/3=4/3 metres per second.I know that I assumed the formula v22(a2-x2) but I can derive it if needed although it should be proven in the a level text books anyway.

Answered by Further Mathematics tutor

2762 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How can the integrating factor method be derived to give a solution to a differential equation?


Use the geometric series e^(ix) - (1/2)e^(3ix) + (1/4)e^(5ix) - ... to find the exact value sin1 -(1/2)sin3 + (1/4)sin5 - ...


Sketch the locus of z on an Argand diagram if arg[(z-5)/(z-3)] = π/6


Find the vector equation of the line of intersection of the planes 2x+y-z=4 and 3x+5y+2z=13.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning